repair personnel - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

repair personnel - translation to russian

DNA REPAIR MECHANISM
Transcription-coupled repair; Transcription-Coupled Repair; Transcription coupled repair; Nucleotide excition repair; Transcription-coupled nucleotide excision repair
  • doi=10.4061/2010/179594 }}</ref>
  • doi=10.4061/2010/616342 }}</ref>
  • doi=10.2174/138920209788488544 }}</ref>
  •  doi = 10.1371/journal.pbio.0040203 }} {{open access}}</ref>
  • Schematic depicts binding of proteins involved with TC-NER.<ref name="pmid20725631"/>

repair personnel      

нефтегазовая промышленность

ремонтный персонал

double-strand break         
  • DNA ligase, shown above repairing chromosomal damage, is an enzyme that joins broken nucleotides together by catalyzing the formation of an internucleotide [[ester]] bond between the phosphate backbone and the deoxyribose nucleotides.
  • A chart of common DNA damaging agents, examples of lesions they cause in DNA, and pathways used to repair these lesions. Also shown are many of the genes in these pathways, an indication of which genes are epigenetically regulated to have reduced (or increased) expression in various cancers. It also shows genes in the error-prone microhomology-mediated end joining pathway with increased expression in various cancers.
  • Most life span influencing genes affect the rate of DNA damage.
  • DNA repair rate is an important determinant of cell pathology.
  • The main double-strand break repair pathways
  • url=}}</ref>
  • Paul Modrich talks about himself and his work in DNA repair.
  • Structure of the base-excision repair enzyme [[uracil-DNA glycosylase]] excising a hydrolytically-produced uracil residue from DNA. The uracil residue is shown in yellow.
PROCESS OF RESTORING DNA AFTER DAMAGE
Dna repair; DNA Repair; DNA damage; DNA repair genes; Excision repair; Excision repair mechanism; Dna repair enzymes; Dna repair-deficiency disorders; Dna repair genes; Double-strand breaks; Double-strand break; Types of DNA lesions; Double strand breaks; Translesion synthesis; DNA damage checkpoint; Double strand break; Self-repair mechanisms; DNA repair gene; Single strand break; Single-strand break; DNA damage checkpoints; DNA lesions; DNA lesion; Translesion; Translation polymerase; DNA-damage response; DNA repair-deficiency disorders; Translesion DNA synthesis; Double-stranded break; Single-stranded break; DNA damage repair

общая лексика

двухнитевой разрыв (ДНК)

excision repair         
  • DNA ligase, shown above repairing chromosomal damage, is an enzyme that joins broken nucleotides together by catalyzing the formation of an internucleotide [[ester]] bond between the phosphate backbone and the deoxyribose nucleotides.
  • A chart of common DNA damaging agents, examples of lesions they cause in DNA, and pathways used to repair these lesions. Also shown are many of the genes in these pathways, an indication of which genes are epigenetically regulated to have reduced (or increased) expression in various cancers. It also shows genes in the error-prone microhomology-mediated end joining pathway with increased expression in various cancers.
  • Most life span influencing genes affect the rate of DNA damage.
  • DNA repair rate is an important determinant of cell pathology.
  • The main double-strand break repair pathways
  • url=}}</ref>
  • Paul Modrich talks about himself and his work in DNA repair.
  • Structure of the base-excision repair enzyme [[uracil-DNA glycosylase]] excising a hydrolytically-produced uracil residue from DNA. The uracil residue is shown in yellow.
PROCESS OF RESTORING DNA AFTER DAMAGE
Dna repair; DNA Repair; DNA damage; DNA repair genes; Excision repair; Excision repair mechanism; Dna repair enzymes; Dna repair-deficiency disorders; Dna repair genes; Double-strand breaks; Double-strand break; Types of DNA lesions; Double strand breaks; Translesion synthesis; DNA damage checkpoint; Double strand break; Self-repair mechanisms; DNA repair gene; Single strand break; Single-strand break; DNA damage checkpoints; DNA lesions; DNA lesion; Translesion; Translation polymerase; DNA-damage response; DNA repair-deficiency disorders; Translesion DNA synthesis; Double-stranded break; Single-stranded break; DNA damage repair
эксцизионная репарация, восстановление путём удаления повреждённого участка (молекулы ДНК)

Definition

anti-personnel
¦ adjective (of weapons) designed to kill or injure people rather than to damage buildings or equipment.

Wikipedia

Nucleotide excision repair

Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases. Similarly, the MMR pathway only targets mismatched Watson-Crick base pairs.

Nucleotide excision repair (NER) is a particularly important excision mechanism that removes DNA damage induced by ultraviolet light (UV). UV DNA damage results in bulky DNA adducts - these adducts are mostly thymine dimers and 6,4-photoproducts. Recognition of the damage leads to removal of a short single-stranded DNA segment that contains the lesion. The undamaged single-stranded DNA remains and DNA polymerase uses it as a template to synthesize a short complementary sequence. Final ligation to complete NER and form a double stranded DNA is carried out by DNA ligase. NER can be divided into two subpathways: global genomic NER (GG-NER or GGR) and transcription coupled NER (TC-NER or TCR). The two subpathways differ in how they recognize DNA damage but they share the same process for lesion incision, repair, and ligation.

The importance of NER is evidenced by the severe human diseases that result from in-born genetic mutations of NER proteins. Xeroderma pigmentosum and Cockayne's syndrome are two examples of NER associated diseases.

What is the Russian for repair personnel? Translation of &#39repair personnel&#39 to Russian